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Estimation for the Rasch Model
when both Ability and Difficulty

Parameters are Random

Abstract

Bsimation of the parameter s of the Reih model, a one

parameter item remponse model, s considered when both the

item p and the ability pramete r are considered

random quantities. It is mumed that the item parametser are

drawn frn a N(f!,distribution, and the abilities are drawn

from a N(O distribution. A variation of the EM algorithm is

used to find approxmate maximum likelihood. estimates of 1.7

and . A second approach assumes that the difficulty

prameters are drawn from a uniform distribution over part of

the real line. Real and simulated data sets are discused for

illustration. )1 h te -cr , -) .
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Introduction

Suppose that the responses of n examines to k test items are amembled in an

nxk matrix Y of binary variables, with Y = I if the ith examinees answer to item

is correct, and Y. = 0 otherwise. It will be asumed that the model for the
1i

responses is the Rasch model, ie.

pis = (. 10-)
I ij

Sexp(.-P) / I 1 + exp(.-p)] (1.1)
I j I j

where 9t is the ability of the ith examinee and p is the difficulty parameter for

item 1 Here 9 and P may take on any values on the entire real line. Given = (8,

.,e )andp (e. .8 ), conditionalinependenceamong theresponses wilbe
n I k

assumed, i.e.

p(Yf ) I A P.Y ( ) Yj (1

The Ra ch model is the simplest and probably the most widely used model in

item response theory. As Thisen (19) points out, there are situations where the

Rasch model dos fit test data well. However, it is overly simplistic in some

situatims, and so two and three parameter models (2PL and 3PL) have been propmed

and studied. Estimation schernes for the 2PL and 3PL are usually much more

involved than for the Rasch model. In addition, the 2PL and 3PL models require a

large n in order to accurately estimate the second and third parameters of some

items (Lord, i9M&). Thus when n is small, under about 200, the 2PL and 3PL models

are not practical, and the Rasch model should be used. The results of this paper

should be useful in these situations where the Rasch model is appropriate.
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When 6 and .8 are both considered fixed but unknown quantities, the standard

maximum likelihr .4 (ML) procedure of Birnbaum (198) is applicable and has been

studied extensively. There have been several recent proposals related to the EM

algorithm (Dempster, Laird, Rubin. 1977) for estimating .8 or 9 -when 9 is treated as

a random sample from a normal distribution. For example, Smnthanan and

Blumenthal (1278) give ML solution for parameters of this normal distribution when

is given, Bock and Atkin (1961) and Thiien (e) dbus methods for obtaining

marginal ML estimates of .8, and Rigdon and Tsutakawa (193) discuss ML estimation

of both / and the parameter of the normal distribution. In each of thin cases

individual ability parameters can be subsequently estimated by computing the

posterior mean of 0 after replacing the unknown parameters (ie., f or the

parameter of the normal distribution) by their ML estimate.

It is well known that the maximum likelihood estimate of ability is not finite

for examie. that have a response pattern of all correct or all incorrect answers.

The procedures mentioned in the previous paragraph posses the advantage of

yielding a finite estimate of ability even in such situations. If the number of

examines is relatively small, it is likely that the response patterns for some items

will consist of all zeros or all ones. In such a situation the method of maximum

likelihood and the methods mentioned in the previous paragraph do not yield a

finite estimate of the difficulty parameter. One of the methods proposed in this

article does have the advantage of yielding finite estimates of difficulty and ability

in these situations.

Lord (193b) showed that for 3PL the maximum likelihood estimate of ability is

positively biased for examinees with high ability and neptively biased for



exammses with low ability. By placing a prior distribution on the ability

parameters, as is done for the methods mentioned previously and for the methods

propomd here, the ability estimates are "pulled" toward the origin. Lord (198) also

indicate. agin for 3PL that Byesian modal estimates of ability may be biased

inward but their mean square error is mnaller than that for ML

Since the Rasch model is ... metric, in the sen that the probability of correct

repose depends only on the difference between the ability and difficulty

parameters, the same problem of bias exists for the difficulty parmeer. In this

paper we deal with the case where the difficulty parameters are also treated as a

random sample from some prior distribution. The use of a prior distribution for

the difficulty parameter. again ')puf' the estimates toward the origin

If the parameters of the prior distribution for (8, p) are known, then inference

on 6 or , can be based on the posterior distribution, given the data matrix y. In

the absence of known prior parameters, we consider replacing them by estimates

obtained from the data. and thus adopt a parametric empirical Bayes (PEB) approach

(Morris, 1M63). One general procedure for estimating such prior parameters is by

maximum likelihood, using the marginal likelihood function of the parameter.

Unfortunately this approach presents insurmountable numerical problems. We

propose instea. an approximation suggested by the CWF procedure of Eigdon and

Tsutakawa (1M). For situations in which prior knowledge of is diffuse and

cannot be treated as a random mple. we propose a limit of the above method by

taking the prior of P to be locally uniform. Comparisms of these procedures to each

other and to the MF estimator of Rigdon and Tsutakawa (1963) are made by using

simulated data sets.



Methodology

Suppose now that 0,, ... 0 are selected from a normal distribution with

2

mean zro and variance a, and that 0,, P ".... P. are selkcted from a normal

distribution with mean - and variance T2. The value of (a,-,T) which I

the marginal likelihood of the observed data y, i.e.

P(y I ai-YT) f f pQ0, I a,y) dOdp (2.1)

is called the marginal maximum likelihood estimator (MLE). However, under the

above assumptions, maximization of this quantity presents inhurmonmtable

numerical problems since multidimensional integrals must be evaluated, even if the

EM algorithm of Dempster. Laird and Rubin (1277) is applied. Instead we pro a

variation of the EM algorithm, which is milar to the CMLF method of Rigdon and

Tsutakawa (1963). Note that the posterior density of 8. given (f.l,) can be written

P(O. I ya) c O. Ia) Ap(yI O.P)

I ~ I ?m jI 1Oc oxp[ r.8. - O.'/2a ] / I + expO. - ](22)

where

ri =-- ij

is the raw score of examinee i. Similarly, the posterior density of /. given (0,7,T)

can be written

Oc exp( -qfl - -y)5/2T 2 ]/ [ I +expO. - P) 1(2.3)
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where

qj -y

Now thes densitie are numerically tractable, since, except for normalizing

constant%~ they are just products of other densities which are easy to evaluate. Since

neither 0 nor $ are available, we exploit this tractability by applying the following

algorithm. Start with some initial value (.8 a .-y 'r ). set m equal to Waro and

repeat the following steps

El Ste: Compute the posterior expectations

(1)) (M)

and

8 (2) = )( (2.5)

where 8 =(9,..., These expectations are evaluated by normalizing and

I
intrgting (22) times 60 and for i=1~ to n.

M Ster Compute the posterior expectations

() = E(P1 I y0(',YM),'r ) (2.0)

and

0 (2 = E(j 2 , ,Y (1) (2.7)
~ 2 W AI (I)

where 8 = (I,.... and set . ) 8 These expectations are evaluated

by normalizing and integrating (2.3) times P. and . or j=i to k.

Mt Set
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~(+) 1O!Z)/n )P/ (2.8)

L(in.8) =/k (2.9)
( J)m+-[-,m

,(M+I) F' 1 (m1 (2.10)

where O() is the i' (jW) element of then vector 8~(5") =1, 2. Increment

m and test for convergence. If convergence is attained to a prescribed level

then stop, otherwise go to the El Step.

Upon Convergence, the final value (;, i. 3) of (a(m), ,(m; 0(m)) maximizes the two

conditional likelihood functions given by

f p( 1. ) O ) dO

and

4-y, 10) f p(y 16.,0) p( -y,rT)d.8

where (", .) satisfies the equations

and

In Rigdon and Tsutakawa (1983), CMLF stood for Conditional Maximum Likelihood

Fixed (the difficulty parameters were fixed, ie. not random). Keeping the same

naming strategy, we call the method described here CMLR, for Conditional Maximum

Likelihood Random (the difficulty parameters are considered random). It should be

noted that all expectations required for this method are single integrals and must be

evaluated by using numerical techniques. Gauss-Hermite quadrature formulas are

appropriate (see Stroud and Secrest, 19W8).



Once estimates for a, -. and T are obtained, we estimate the ft and 09 by

evaluating the means of the posterior distributions as in equations (2.4) and (2.8).

Appraximate interval estimates for the ft and Pfs can be obtained by approximating

the posterior distribution by a normal distribution using the posterior mean and

standard deviation. That is, the interval estimate for 8 is
i84)+ (8() -[ ) ),/.

i - I-a/2 1

and for .6 the interval estimate is
J

,() (2) €.)
J JT/ E J

where z is the (I-a/2) point of the standard normal distribution function.

In some cas there is vague prior information regarding $ and the assumption

that p is a random sample from a common distribution may not be reasonable.

One Bayesian solution to this problem is to adopt -an independent uniform prior

distribution on each j.. In this case (y,T) does not exist, equation (2.9) is not
J

necessary and the M Step reduces to computing a (m+I) only. The posterior density of

. is now replaced byJ

p(j Y . ) Oc exp(-.O.q)/, I + exp(. - J)]. (2.1)

J~ ~~ j 1 J

This method will be called CMLU, for Conditional Maximum Likelihood Uniform,

since the prior is uniform. This method does not have the advantage of yielding

finite estimates of the difficulty parameter when the response pattern for that item

cnasists of all zeros or all ones.

7 . .;. ' '? '," ?, ' ,? ,.", >, ' :'.: .- ,%' _V. .;t: " .:-: , .0. ; t#?
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An Example

We will illustrate our methods using results from a test of general knowledge

regarding arthritis, which was administered to hospital patients. This data set was

previously used in Tsutakawa (1084) and consists of responses to k=47 items by

n=162 patients. We will compare the methods proposed here, ie. CMLR and CMLU

with the MLF method of Rigdon and Tsutakawa (193), since these methods are

similar in the way that they apply the EM algorithm. The CMLF estimates are

nearly identical to the MLF estimates. The estimates of the prior parameters, or the

appropriate sample statistics, are shown in Table I for the MLF method and the CMLR

and CMLU methods of this article; the average of the estimated abilities are also

shown. Tables Hl and IMI display the estimates of the ability and difficulty

parameters, respectively. Both the ability and difficulty estimates obtained by MLF

and CMLU are quite close. The estimates obtained by CMLR are somewhat less

disperse than the estimates obtained by other methods.

Insert Tables I, I and M about here.

- - -- - - - - - - - -- ...- - - - - - - - - --*.............



Simulations

The computer-generated data sets of Rigdon and Tsutakawa (19M3) are used here

to compare the performance of the various estimation procedures. The ability

parameters were randomly generated from the standard normal distribution. The

difficulty parameters were chosen deterministically as the 1, 3, . , percent

points of the following distributions

i) the standard normal.

ii) the uniform over the interval (-3I/2 3 1/Z) and

W) the parabolic U-shaped with density h(x) = (5/Z7)x2 + (7/38)

for -1.5 < x < 1.5.

These represent sets of item parmeter with difficulties (i) concentrated near the

average ability, (ii) spread out uniformly, and (iii) sparse near the average. The six

response matrices Y was then randomly generated using the probabilities f correct

response which depend on e and je through the relation in (1.1).

The estimates of the parameters of the prior distribution are shown in Table IV

for CMLR and CMLU and for the MLF method of Rigdon and Tsutakawa (M 3). The

averages of the estimated abilities are also shown in this table. For MLF and CM[LU

(where -y and T are not part of the model) the sample means and standard

deviations are shown for comparisln. The averages of the sets of estimates tend to

be quite close. The major difference between the sets of estimates seems to be in the

disperson. The difficulty estimates obtained by CLR tend to be less disperse than

those for the other methods. Ability estimates from CMLR are also less disperse, but

this is not as pronounced.



Insert Table IV about here

Comparisons can be made between the actual values and the estimated values since

the data were simulated. A measure of the accuracy of these proceduree is the root

mean squared deviations (RMSD's),

E. (8.- a)2/1 1/

and

E. 0i.-)/k
i J

where and are estimates of 86. and The RMSIs for the "LF CMLR and CWLU

methods are given in Table V. In most cases the performances of the pracedure. are

quite clawe. In some case the RMSD of the CMLR estimates of difficulty are

considerably leaw than the RXMDs for the other methods. Two of these cass ocur

when the distribution of the Af was chosen to be "Un-shaped. indlicating that the

CMLR method is robust with respect to the assumnption that the ^f come fromt a

normal distribution.

Insert Table V about here

The frequencies of actual values within two posterior standard deviations of the

estimates are also shown in Table V. As can be meen from this table, claw to G5 per

cent of the estimates are within these limits, a result we would expect if the

posterior. were normally distributed. This indicates that the posterior distribution

may be useful in assessing the uncertainty in an estimate of 8 or /.

C '.
Le.
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Discussion

A Bayesian who has not seen the items may be inclined to assume that the prior

distribution of / is exhanpable. This person may then find it convenient to

represent the exchangeable prior through a normal distribution having a

hyperparameter with a subjective prior distribution. A frequentist, on the other

hand, may view / as a random sample from a larger population associated with a

large or hypothetically large item pool. This person might then find it convenient to

view this population as one having a normal distribution which can be estimated.

Our first estimate. CMLR, conforms more to the latter point of view, whereas our

second estimate, CMLU, is more compatible with the former when the prior for .8 is

diffuse.

We feel that our method can be recommended in situations where there are

relatively few examinees and there is limited information about the item response

curves. When the data satisfies the assumptions for the Rasch model and n is

larger, our estimates should be in close agreement with the conventional ML

estimates. For small n, not only does one have problems with the nonexistence of

ML estimates, but the asymptotic properties for measuring the precision of these

estimates will be of limited value. Our method seems particularly suitable for

handling such cases.

The extension of our approach to 2PL and 3PL is clearly possible. Such

extensions would require introducing additional distributions for the additional item

parameters and developing efficient techniques for numerically evaluating two and

three dimensional integrals, corresponding to (2.8) and (2.7).
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Table I
Estimates of Parameters of Prior

Distribution for Arthritis Test

my7 0.00 0.76 -0.90* 1. 17*
cIL 0.02 0.76 -0.85 1.12

OH2 0.01 0.78 -0. a* 1.160.

Sample statistics used in these entries.



Table II

Estimates of Abilities for Arthritis Test

Raw $core NIT QUm QU
47 2.20 2.16 2.20
44 1.61 1.60 1.61
42 1.29 1.28 1.29
41 1.24 1.13 1.14
40 1.00 1.00 1.00
39 0.87 0.87 0.87
38 0.74 0.75 0.74
37 0.62 0.63 0.62
36 0.50 0.51 0.50
35 0.38 0.40 0.38
34 o.27 0.29 0.27
33 0.16 0.19 0.16
32 0.06 0.06 0.06
31 -0.05 -0.02 -0.05
30 -0.15 -0.12 -0.15
29 -0.25 -0.22 -0.25
28 -0.35 -0.31 -0.35
27 -0.44 -0.41 -0.44
26 -0.54 -0.50 -0.54
25 -0.64 -0.60 -0.64
24 -0.73 -0.69 -0.73
23 -0.83 -0.78 -0.83
22 -0.92 -0.87 -0.92
20 -1.11 -1.06 -1.11
19 -1.20 -1.15 -1.20
18 -1.30 -1.24 -1.30
17 -1.39 -1.34 -1.39
16 -1.49 -1.43 -1.49
13 -1.78 -1.71 -1.78
8 -2.31 -2.23 -2.31



-20-

Table I

Estimates of Difficulty Parameters for Arthritis Test

Item Score MY CNLR CxIU
149 -2.86 -2.53 -2.68
148 -2.60 -2.45 -2.59
146 -2.44 -2.30 -2.43
145 -2.37 -2.23 -2.36
143 -2.24 -2.13 -2.22
141 -2.11 -2.03 -2.10
139 -2.00 -1.91 -1.98
136 -1.84 -1.73 -1.83
135 -1.79 -1.68 -1.78
133 -1.70 -1.62 -1.68
132 -1.65 -1.60 -1.64
130 -1.57 -1.54 -1.55
123 -1.29 -1.17 -1.27
122 -1.25 -1.14 -1.23
121 -1.21 -1.13 -1.20
118 -1.11 -1.09 -1.09
117 -1.07 -1.08 -1.06
115 -1.00 -1:03 -0.99
110 -0.84 -0.75 -0.83
107 -0.75 -0.64 -0.74
103 -0.62 -0.60 -0.61
98 -0.48 -0.53 -0.47
94 -0.36 -0.33 -0.35
93 -0.33 -0.27 -0.33
88 -0.19 -0.11 -0.19
87 -0.16 -0.11 -0.16
82 -0.02 -0.08 -0.02
81 0.00 -0.07 0.01
80 0.03 -0.05 0.03
72 0.26 0.34 0.25
71 0.28 0.37 0.28
62 0.54 0.45 0.54
61 0.57 0.47 0.56
57 0.69 0.67 0.68
50 0.91 0.91 0.90
43 1.14 1.04 1.13
37 1.36 1.36 1.35
27 1.79 1.70 1.77



Table IV

Estimates of Parameters of Prior
Distribution for Simulated Data Sets

n Method E b./n o T1

my7 -0.01 0.97 0. 11* 1.09*

1(0.1) 50 CUJL -0.00 0.93 0.11 1.00
c.U -0.00 0.98 0. 11* 1.10*

NIJ -0.01 1.03 0.01* 1.03*
1(0,1) 200 CQLR -0.00 1.02 0.01 0.99

CIU -0.00 1.03 0.01* 1.02*

my -0.00 1.14 -0.26* 1.03*
Ualfora 50 QIL -0.00 1.09 -0.25 0.94

cUU 0.00 1.14 -0.26 1.03*

my, -0.00 0.97 0.09* 0.99*
Ualfora 200 CNU. 0.01 0.95 0.11 0.96

cILU -0.01 0.96 0.09* 0.98*

my 0.00 0.99 -0.04* 1.04*
"V"-suaped 50 CIUR -0.00 0.95 -0.04 0.96

C3,U 0.00 1.00 -0.04* 1.05*

.F 0.00 1.06 -0.01* 1.06*
"U-shaped 200 CNUt 0.01 1.04 0.01 1.03

CxIfU 0.00 1.05 -0.01* 1.05*

* Sample statistics used la these etrios.



Table V

Comparison of Actual and Estimated Values:
Simulated Data Sets

Freq. of freq. of

0s n Method RMSD RMSD B within 2 4. within 2 sA.
Ly 0.394 0.311 48 -

1(0,1) 50 CLS 0.355 0.319 48 48
CHLU 0.425 0.311 48 47

MY 0.173 0.322 191 -

1(0.1) 200 cKU 0.173 0.324 189 47
CNL 0.167 0.324 190 48

my 0.263 0.326 48 -
Uniform 50 LU 0. 266 0.324 48 4

Cl 0.265 0.326 48 49

IF 0.155 0.322 193 -

Uniform 200 CILl 0.158 0.324 192 48
OILU 0.155 0.319 193 49

XIL 0.336 0.298 48 -

"U"-shapod 50 CIL 0.318 0.300 49 50

O11 0.341 0.298 48 50

MY2 0.161 0.322 187 -

OU"-shape4 200 COLS 0.145 0.322 188 47

ILU 0.158 0.322 188 48
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